[This question paper contains 6 printed pages.]

Your Roll No. 2. 2.2

Sr. No. of Question Paper: 738

 \mathbf{B}

Unique Paper Code

32351201

Name of the Paper

BMATH203 – Real Analysis

Name of the Course

: B.Sc. (H) Mathematics

Semester

II

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All Questions are Compulsory.
- 3. Attempt any two parts from each question.
- 4. All Questions are of equal marks.
- 1. (a) State the completeness property of \mathbb{R} , hence show that every non-empty set of real numbers which is bounded below, has an infimum in \mathbb{R} .

- (b) Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded set and sup $(A \cup B) = \max \{ \sup A, \sup B \}$.
- (c) State and prove nested interval property.
- (d) Define an open set and closed set in \mathbb{R} .

Show that if a, $b \in \mathbb{R}$, then the open interval (a, b) is an open set.

Is a closed interval a closed set?

2. (a) Let S be a bounded set in \mathbb{R} and let S_0 be a non-empty subset of S. Show that

 $\inf_{S_0} S_0 \le \sup_{S_0} S_0 \le \sup_{S_0} S$

(b) State Archimedean property. Hence, prove that if

$$S = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$$
 then inf $S = 0$.

(c) If S ⊆ R is non empty. Show that S is bounded if and only if there exists a Closed bounded interval
I such that S ⊆ I.

- (d) If $x, y, z \in \mathbb{R}$ and $x \le z$. Show that $x \le y \le z$ if and only if |x y| + |y z| = |x z|. Interpret this geometrically.
- 3. (a) Prove that a convergent sequence of real numbers is bounded.

Is the converse true? Justify.

(b) Let (x_n) be a sequence of positive real numbers

such that $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right) = L$ exists. If L < 1, then

 (x_n) converges and $\lim_{n\to\infty} (x_n) = 0$.

- (c) Prove that if C > 0, then $\lim_{n \to \infty} (C^{1/n}) = 1$.
- (d) Let $x_1 > 1$ and $x_{n+1} = 2 \frac{1}{x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is bounded and monotone. Also find the limit.

- 4. (a) Let X = (x_n) and Y = (y_n) be sequences of real numbers that converge to x and y respectively.

 Then the product sequence X.Y converges to x.y.
 - (b) Let $X = (x_n)$ be a bounded sequence of real numbers and let $x \in R$ have the property that every convergent subsequence of X converges to x. Then the sequence X is convergent to x.
 - (c) Discuss the convergence of the sequence (x_n) ,

where
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
 for $n \in N$.

(d) Use the definition of the limit of the sequence to find the following limits

(i)
$$\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

(ii)
$$\lim_{n\to\infty} \left(\frac{3n+1}{2n+5} \right)$$

(a) Prove that a necessary condition for the convergence of an infinite series Σa_n is lim a_n = 0.
 Is the condition sufficient? Justify with the help of an example.

- (b) Prove that the geometric series $1 + r + r^2 + \cdots$ converges for $0 \le r \le 1$ and diverges for $r \ge 1$.
- (c) Test for convergence, the following series:

(i)
$$\frac{1}{5} + \frac{2!}{5^2} + \frac{3!}{5^3} + \cdots$$

(ii)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

- (d) Prove that the series $x + \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$ converges if and only if $-1 \le x \le 1$.
- 6. (a) State and prove Cauchy's nth root test for positive term series in the series of the series o
 - (b) Prove that the series $1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$ converges for $p \le 1$ and diverges for $p \le 1$.
 - (c) Test for convergence, the following series:

(i)
$$\sum_{n=1}^{\infty} \left[\sqrt[3]{n^3 + 1} - n \right]$$

P.T.O.

(ii)
$$\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$$

(d) Prove that every absolutely convergent series convergent. Show that the series $\sum (-1)^n \frac{n+2}{2^n+5}x$ converges for all the real values of x.

download from Study Confinence of the Confinence

(1500)